Respuesta :

The sum of angles at a point (or in a circle) is 360 degrees.

Therefor, we have that:

[tex]m\angle GCD+m\operatorname{\angle}DCE+m\operatorname{\angle}ECF+m\operatorname{\angle}FCG=360\degree[/tex]

Given the values in the question:

[tex]\begin{gathered} m\operatorname{\angle}DCE=75 \\ m\operatorname{\angle}ECF=80 \\ m\operatorname{\angle}FCG=55 \end{gathered}[/tex]

Therefor, we can calculatoe the measure of angle GCD to be:

[tex]\begin{gathered} m\operatorname{\angle}GCD+75+80+55=360 \\ m\operatorname{\angle}GCD=360-75-80-55 \\ m\operatorname{\angle}GCD=150\degree \end{gathered}[/tex]

Ver imagen DavyG32695
Ver imagen DavyG32695