Given that Jon said,
"m-1 is always greater than 1-m"
we want to find how true the statement is;
[tex]\begin{gathered} \text{for m = positive integer.} \\ m=5 \\ m-1=5-1=4 \\ 1-m=1-5=-4 \\ So,\text{ } \\ m-1>1-m \\ \text{for m equals positive integer } \end{gathered}[/tex]
secondly for negative values of m;
[tex]\begin{gathered} m=-5 \\ m-1=-5-1=-6 \\ 1-m=1-(-5)=1+5=6 \\ So, \\ m-1<1-m \\ \text{for m equals negative integers} \\ \end{gathered}[/tex]
So, the statement "m-1 is always greater than 1-m" is false.
Because 1- m is greater than m-1 when m is a negative integer.
Therefore, I Disagree, because 1- m is greater than m-1 when m is a negative integer