SOLUTION
From the graph,
[tex]\begin{gathered} \text{Rise}=\text{Distance(mi)}=y-\text{values} \\ \text{Run}=\text{Time(hr)}=x-\text{values} \end{gathered}[/tex]
To obtain the rise-over-run value, we will pick any two points on the graph and solve for the slope.
[tex]\begin{gathered} (x_1,y_1)=(1,35) \\ (x_2,y_2)=(2,70) \end{gathered}[/tex]
The formula for the slope(m) between two points is,
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Therefore,
[tex]\begin{gathered} m=\frac{70-35}{2-1}=\frac{35}{1}=35 \\ \therefore m=35 \end{gathered}[/tex]
Hence, the rise-over-run value is 35 (OPTION 3).