Respuesta :

Answer:

The equation parallel to the line is y = -5x - 33

The equation perpendicular to the line is:

[tex]y\text{ = }\frac{1}{5}x\text{ +}\frac{17}{5}[/tex]Explanations:

The equation parallel to the line y = mx + c and passing through the point

(x₁, y₁) is given as:

[tex]y-y_1=m(x-x_1)_{}[/tex]

The equation perpendicular to the line y = mx + c and passing through the point

(x₁, y₁) is given as:

[tex]y-y_1=\frac{-1}{m}(x-x_1)[/tex]

Comapring the line y = -5x + 8 to y = mx + c:

m = -5

The line parallel to the line y = -5x+8 and passing through the point (-7, 2) will be:

[tex]\begin{gathered} y\text{ - 2 = -5(x-(-7))} \\ y\text{ - 2 = -5(x+7)} \\ y\text{ - 2 = -5x - 35} \\ y\text{ = -5x - 35 + 2} \\ y\text{ = -5x - 33} \end{gathered}[/tex]

The line perpendicular to the line above and passing through the point (-7, 2) will be:

[tex]\begin{gathered} y\text{ - 2 = }\frac{-1}{-5}(x\text{ - (-7))} \\ y\text{ - 2 = }\frac{1}{5}x\text{ + }\frac{7}{5} \\ y\text{ = }\frac{1}{5}x\text{ + }\frac{7}{5}+2 \\ y\text{ = }\frac{1}{5}x\text{ +}\frac{17}{5} \end{gathered}[/tex]