Respuesta :

The first step to solve this problem is to find the length of the side of the polygon, in this case the decagon, using the following formulas:

[tex]\begin{gathered} l=Ap\cdot2\tan \theta \\ \theta=\frac{360}{2\cdot n} \end{gathered}[/tex]

Find theta using the formula above, by replacing n for 10, which is the number of sides the decagon has.

[tex]\begin{gathered} \theta=\frac{360}{2\cdot10} \\ \theta=\frac{360}{20} \\ \theta=18 \end{gathered}[/tex]

Now, find the length of the sides of the decagon.

[tex]\begin{gathered} l=10\cdot2\cdot\tan 18 \\ l=6.5 \end{gathered}[/tex]

The length of each side is 6.5cm.

With this length, find the area of the decagon, use the following formula:

[tex]A=\frac{P\cdot Ap}{2}[/tex]

Where P is the perimeter and Ap is the apothem.

Replace and find the area of the decagon:

[tex]\begin{gathered} A=\frac{(6.5\cdot10)\cdot10}{2} \\ A=325 \end{gathered}[/tex]

The area of the decagon is approximately 325 cm^2