Respuesta :

Given

The function,

[tex]y=x^2+8x+16[/tex]

To find:

The range.

Explanation:

It is given that,

[tex]y=x^2+8x+16[/tex]

That implies,

Since, For a parabola, ax²+bx+c, with vertex (h,k).

Then,

[tex]\mathrm{If}\:a>0\:,\mathrm{the\:range\:is}\:f\left(x\right)\ge\:k[/tex]

Therefore,

[tex]\begin{gathered} y=x^2+8x+16 \\ \Rightarrow y=(x+4)^2-16+16 \\ \Rightarrow y=(x+4)^2 \end{gathered}[/tex]

Hence, the vertex is (-4,0).

And, a=1.

Then,

[tex]y\ge0[/tex]

Hence, the range is [0,∞).