Respuesta :

The JK is perpendicular bisector of NL. So NJ = LJ.

Consider the triangle NJK and triangle LJK.

[tex]NJ=LJ\text{ (JK is perpendicular bisector of NL)}[/tex][tex]\angle NJK=\angle LJK\text{ (Each angle is 90 degree)}[/tex][tex]JK=JK\text{ (Common side)}[/tex]

So triangle NJK is congruent to triangle LJK. So segment lengths that are equal,

[tex]NK=LK[/tex][tex]NJ=LJ[/tex]

2.

The equation for x,

[tex]6x-5=4x+1[/tex]

Solve the equations for x.

[tex]\begin{gathered} 6x-4x=1+5 \\ 2x=6 \\ x=3 \end{gathered}[/tex]

So the length of side NK is,

[tex]\begin{gathered} NK=6\cdot3-5 \\ =18-5 \\ =13 \end{gathered}[/tex]

So the length of side NK is 13.