Divide monomials ( -18p^4 q^7) (-6p^3 q^8) / -36p^12 q^10

Given:
[tex]\frac{(-18p^4q^7)(-6p^3q^8)}{-36p^{12}q^{10}}[/tex]We will use the following rules of the exponents:
[tex]\begin{gathered} \frac{a^m}{a^n}=a^{m-n} \\ a^m\cdot a^n=a^{m+n} \end{gathered}[/tex]So, the given expression will be as follows:
[tex]\begin{gathered} \frac{(-18p^4q^7)(-6p^3q^8)}{-36p^{12}q^{10}}=(\frac{-18\cdot-6}{-36})\cdot p^{4+3-12}\cdot q^{7+8-10} \\ \\ =(-3)\cdot p^{-5}\cdot q^5 \\ \\ =\frac{-3q^5}{p^5} \end{gathered}[/tex]so, the answer will be:
[tex]\frac{-3q^5}{p^5}[/tex]