Quadrilateral WXYZ is a rhombus and m∠XWY=u–44°. What is the value of u?

It is given that
[tex]\angle XWY=u-44^o,\text{ and }\angle YZW=110^o[/tex]Recall that the adjacent angles are supplementary in a rhombus.
[tex]\angle XWZand\text{ }\angle YZW\text{ are supplementary angles.}[/tex]The sum of supplementary angles is 180 degrees.
[tex]\angle XWZ+\angle YZW=180^o\text{.}[/tex][tex]Substitute\text{ }\angle YZW=110^o,\text{ we get}[/tex][tex]\angle XWZ+110^o=180^o\text{.}[/tex][tex]\angle XWZ=180^o-110^o[/tex][tex]\angle XWZ=70^o[/tex][tex]\angle XWZ=\angle XWY+\angle YWZ[/tex]Recall that the diagonals bisect the angles of the rhombus.
[tex]\angle XWY=\angle YWZ[/tex][tex]\angle XWZ=\angle XWY+\angle XWY[/tex][tex]\angle XWZ=2\angle XWY[/tex][tex]Substitute\text{ }\angle XWZ=70^o\text{ and }\angle XWY=u-44^o,\text{ we get}[/tex][tex]70^o=2(u-44^0)[/tex][tex]\frac{70^o}{2}=u-44^0[/tex][tex]35^o=u-44^0[/tex][tex]35^o+44^o=u[/tex][tex]u=79^o[/tex]
Hence the value of u=79 degrees.