Respuesta :

Solution:

To find the slope, m, of a straight line, the formula is

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

For line AC,

Picking coordinates from the graph

[tex]\begin{gathered} (x_1,y_1)\Rightarrow(2,5) \\ (x_2,y_2)\Rightarrow(4,4) \end{gathered}[/tex]

Substitute the coordinates into the formula to find the slope, m, of a straight line

[tex]m=\frac{4-5}{4-2}=\frac{-1}{2}=-\frac{1}{2}[/tex]

For line DC

Picking coordinates from the graph

[tex]\begin{gathered} (x_1,y_1)\Rightarrow(4,4) \\ (x_2,y_2)\Rightarrow(6,8) \end{gathered}[/tex]

Substitute the coordinates into the formula to find the slope, m₁, of a straight line

[tex]m=\frac{8-4}{6-4}=\frac{4}{2}=2[/tex]

Line AC and DC are perpendicular, i.e.

[tex]m\times m_1=-\frac{1}{2}\times2=-1[/tex]

Hence,

[tex]mm_1=-1[/tex]