SOLUTION
The expression for the regression is given as
[tex]\sqrt[]{Pop}=21.35+\mleft(0.566.(\text{years since 1900}\mright)[/tex]So, for 1900 to 2012 is
[tex]\begin{gathered} 2012-1900=112\text{ years } \\ so\text{ we will substitute 112 for the years } \end{gathered}[/tex]We will have
[tex]\begin{gathered} \sqrt[]{Pop}=21.35+(0.566.(\text{years since 1900}) \\ \sqrt[]{Pop}=21.35+(0.566.(112) \\ \sqrt[]{Pop}=21.35+(0.566\times112) \\ \sqrt[]{Pop}=21.35+63.392 \\ \sqrt[]{Pop}=84.742 \end{gathered}[/tex]Squaring both sides we have
[tex]\begin{gathered} \sqrt[]{Pop}=84.742 \\ (\sqrt[]{Pop})^2=(84.742)^2 \\ Pop=7181.2065 \end{gathered}[/tex]Hence the answer is 7181 to the nearest millions Option d is the correct answer