Respuesta :

GIven:

[tex]P(x)\cdot Q(x)=R(x)[/tex][tex]P(x)=x+2\text{ and }R(x)=x^3-2x^2-6x+4[/tex]

Required:

We need to find Q(x).

Explanation:

Consider the equation.

[tex]P(x)\cdot Q(x)=R(x)[/tex][tex]Substitute\text{ }P(x)=x+2\text{ and }R(x)=x^3-2x^2-6x+4\text{ in the equation.}[/tex][tex](x+2)\cdot Q(x)=x^3-2x^2-6x+4[/tex]

Divide both sides of the equation by x+2.

[tex]\frac{(x+2)\cdot Q(x)}{x+2}=\frac{x^3-2x^2-6x+4}{x+2}[/tex][tex]Q(x)=\frac{x^3-2x^2-6x+4}{x+2}[/tex]

Use long division to divide the given functions.

[tex]Q(x)=\frac{x^3-2x^2-6x+4}{x+2}=x^2-4x+2[/tex][tex]Q(x)=x^2-4x+2[/tex]

Final answer:

[tex]Q(x)=x^2-4x+2[/tex]

Ver imagen KelsonV315753