-8) let f(x) = - 2x^3 (x - 2)^2(x + 3). Do the following:a). Find the zeros and their multiplicity.b). What is the end behavior and the maximum number of turning points?c) graph f(x).

8 let fx 2x3 x 22x 3 Do the followinga Find the zeros and their multiplicityb What is the end behavior and the maximum number of turning pointsc graph fx class=

Respuesta :

Given:

[tex]f\mleft(x\mright)=-2x^3\left(x-2\right)^2\left(x+3\right)[/tex]

Required:

We need to find the zeros of the function, the end behavior, and the maximum number of turning points and draw the graph.

Explanation:

a)

Set f(x)=0 to find the zeros of the given function.

[tex]-2x^3(x-2)^2(x+3)=0[/tex]

[tex]x^3(x-2)^2(x+3)=0[/tex][tex]x^3=0,(x-2)^2=0,(x+3)=0[/tex]

[tex]x=0,x-2=0,x+3=0[/tex]

[tex]x=0,x=2,x=-3.[/tex]

The zeros are 0,2 and -3.

Recall that The number of times a given factor appears in the factored form of the equation of a polynomial is called the multiplicity.

The multiplicity 0 is 3.

The multiplicity 2 is 2.

The multiplicity -3 is 1.

b)

The end behavior:

Taking the limit of negative infinity to the given function.

[tex]\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}(-2x^3(x-2)^2(x+3))[/tex]

[tex]\lim_{x\to-\infty}f(x)=-2(-\infty)^3(-\infty-2)^2(-\infty+3)[/tex]

[tex]\lim_{x\to-\infty}f(x)=-(-\infty)(\infty)(-\infty)[/tex]

[tex]\lim_{x\to-\infty}f(x)=-\infty[/tex][tex]As\text{ }x\rightarrow-\infty\text{ then }f(x)\rightarrow-\infty[/tex]

Taking the limit of infinity to the given function.

[tex]\lim_{x\to\infty}f(x)=\lim_{x\to\infty}(-2x^3(x-2)^2(x+3))[/tex]

[tex]\lim_{x\to-\infty}f(x)=-2(\infty)^3(\infty-2)^2(\infty+3)[/tex]

[tex]\lim_{x\to-\infty}f(x)=-(\infty)(\infty)(\infty)[/tex]

[tex]\lim_{x\to-\infty}f(x)=-\infty[/tex]

[tex]As\text{ }x\rightarrow\infty\text{ then }f(x)\rightarrow-\infty[/tex]

Recall that the maximum number of turning points of a polynomial function is always one less than the degree of the function.

The degree of the given function is 3+2+1=6.

The maximum number of turning points =6-1=5.

Final answer:

a)

Zeros of the function

[tex]x=0,x=2,x=-3.[/tex]

The multiplicity 0 is 3.

The multiplicity 2 is 2.

The multiplicity -3 is 1.

b)

End behavior:

[tex]As\text{ }x\rightarrow-\infty\text{ then }f(x)\rightarrow-\infty[/tex]

[tex]As\text{ }x\rightarrow\infty\text{ then }f(x)\rightarrow-\infty[/tex]

The maximum number of turning points is 5.

c)

The graph of the given function

Ver imagen ManaiaF91728