At a certain high school, the Prom Committee is going to choose new members. There are 7 students from the Junior class and 6 students from the Senior class who are willing to be new members. In how many ways can 4 new members be chosen if 2 or fewer must be from the Senior class?

Respuesta :

The Solution:

Given:

7 students from the Junior class.

6 students from the Senior class.

4 new members are to be chosen.

Required:

Find the number of ways 4 new members can be chosen if 2 or fewer must be from the senior class.

So, the possibilities are:

[tex]\begin{gathered} (^6C_0\cdot^7C_4)\text{ or }(^6C_1\cdot^7C_3)\text{ or }(^6C_2\cdot^7C_2) \\ \\ (^6C_0\cdot^7C_4)+(^6C_1\cdot^7C_3)+(^6C_2\cdot^7C_2) \end{gathered}[/tex]

By formula, Combination is

So,

[tex]\lbrack\frac{6!}{(6-0)!0!}\times\frac{7!}{(7-4)!4!}\rbrack+\lbrack\frac{6!}{(6-1)!1!}\times\frac{7!}{(7-3)!3!}\rbrack+\lbrack\frac{6!}{(6-2)!2!}\times\frac{7!}{(7-2)!2!}\rbrack[/tex][tex]=(1\times35)+(6\times35)+(15\times21)=35+210+315=560\text{ ways}[/tex]

Therefore, the correct answer is 560 ways.

Ver imagen TrekR408198