Respuesta :

we have the function

[tex]f\mleft(x\mright)=xe^{\left(13x\right)}[/tex]

Find out the first derivative

[tex]f^{\prime}\mleft(x\mright)=e^{(13x)}+13xe^{(13x)}[/tex]

Find out the second derivative

[tex]f^{\prime}^{\prime}\left(x\right)=26e^{\left(13x\right)}+169xe^{\left(13x\right)}[/tex]

Equate the second derivative to zero, to find out the turning point or inflection point

[tex]26e^{\left(13x\right)}+169xe^{\left(13x\right)}=0[/tex]

the turning point is (-2/13,0)

therefore

Concave up -----> (-2/13, infinite)

Concave down ----> (-infinite, -2/13)