ANSWER
[tex]3.5ft[/tex]EXPLANATION
The height of the ball is given by the function:
[tex]h(t)=-32t^2+8t+3[/tex]To find the maximum height of the function, we have to find the value of h(t) when t is:
[tex]t=-\frac{b}{2a}[/tex]where b = coefficient of t = 8
a = coefficient of t² = -32
Therefore, we have:
[tex]\begin{gathered} t=-\frac{8}{2(-32)}=-\frac{8}{-64} \\ t=0.125 \end{gathered}[/tex]Now, find h(0.125):
[tex]\begin{gathered} h(0.125)=-32(0.125)^2+8(0.125)+3 \\ h=-0.5+1+3 \\ h=3.5ft \end{gathered}[/tex]That is the maximum height of the ball.