In a physics lab a student discovers that the magnitude of the magnetic field in a specific location near a long wire is 22.537 microTesla. If the wire carries a current of 73.298 A, what is the distance from the wire to that location ?

Respuesta :

Given:

The magnitude of the magnetic field is,

[tex]\begin{gathered} B=22.537\text{ }\mu T \\ =22.537\times10^{-6}\text{ T} \end{gathered}[/tex]

The current in the wire is,

[tex]i=73.298\text{ A}[/tex]

To find:

The distance from the wire to that location

Explanation:

The magnetic field due to a current-carrying wire at a distance 'r' is,

[tex]B=\frac{\mu_0i}{2\pi r}[/tex]

Here,

[tex]\mu_0=4\pi\times10^{-7}\text{ H/m}[/tex]

Substituting the values we get,

[tex]\begin{gathered} 22.537\times10^{-6}=\frac{4\pi\times10^{-7}\times73.298}{2\pi r} \\ r=\frac{4\pi\times10^{-7}\times73.298}{2\pi\times22.537\times10^{-6}} \\ r=0.65\text{ m} \end{gathered}[/tex]

Hence, the required distance from the wire is 0.65 m.