Determine the maturity value:
First convert 9.5% to 0.095 and 10 months to 1 year.
[tex]\begin{gathered} 12\text{months}-\longrightarrow\text{ 1yr} \\ 10\text{months}-\longrightarrow x \\ x=\frac{10}{12}=\frac{5}{6} \end{gathered}[/tex]Rate = 9.5% = 0.095
Recall the formula, Finding Simple Interest,
[tex]\begin{gathered} I=\frac{\text{PRT}}{100} \\ I=\frac{10200\times0.095\times\frac{5}{6}}{100} \\ I=807.5 \end{gathered}[/tex]Recall the formula, Finding Maturity Value,
Maturity Value = Principal + Interest
[tex]\begin{gathered} M=P+I \\ M=10200+807.5 \\ M=11007.5 \end{gathered}[/tex]
Therefore the maturity value = $11007.5