Given the System of equations:
[tex]\begin{gathered} \left\{ \begin{aligned}7x+23y=12 \\ 3x+23y=-8\end{aligned}\right. \\ \end{gathered}[/tex]You can use the Elimination Method to solve it, following these steps:
1. You can multiply the second equation by -1.
2.Then you must add both equations.
Then:
[tex]\begin{gathered} \left\{ \begin{aligned}7x+23y=12 \\ -3x-23y=8\end{aligned}\right. \\ _{\ldots\ldots\ldots\ldots\ldots...\ldots\ldots\ldots\ldots..} \\ 4x=20 \end{gathered}[/tex]3. Solve for "x":
[tex]\begin{gathered} x=\frac{20}{4} \\ x=5 \end{gathered}[/tex]4. Substitute the value of "x" into any original equation and solve for "y":
[tex]\begin{gathered} 7x+23y=12 \\ 7(5)+23y=12 \\ 35+23y=12 \\ 23y=12-35 \\ y=\frac{-23}{23} \\ y=-1 \end{gathered}[/tex]So, the solution in the form (x,y), is:
[tex](5,-1)[/tex]Therefore, the answer is OPTION D.