draw the image of triangle ABC under a dilation whose center is P and scale factor is 1/2

Let:
[tex]\begin{gathered} P=(0,0) \\ A=(8,-8) \\ B=(12,-12) \\ C=(0,-10) \end{gathered}[/tex]Since the scale factor is 1/2:
[tex]\begin{gathered} D_{O,k}(x,y)=(k(x-a)+a,k(y-b)+b) \\ O=P=(a,b)=(0,0) \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} A\to(k(x+0)+0,k(y-0)+0)\to A^{\prime}=(4,-4) \\ B\to(k(x+0)+0,k(y-0)+0)B^{\prime}=(6,-6) \\ C\to(k(x+0)+0,k(y-0)+0)\to C^{\prime}=(0,-5) \end{gathered}[/tex]