Respuesta :

Given: An absolute inequality

[tex]\lvert{2x+3}\rvert=15[/tex]

Required: To solve the given absolute inequality.

Explanation: The absolute rule states

[tex]\begin{gathered} If\text{ }\lvert{x}\rvert=a,\text{ }a>0\text{ ,then} \\ x=a\text{ or }x=-a \end{gathered}[/tex]

Hence for the given problem, we have

[tex]2x+3=15\text{ or }2x+3=-15[/tex]

Solving these two equations

[tex]\begin{gathered} 2x=12\text{ or }2x=-18 \\ \end{gathered}[/tex]

Which gives the value of x as

[tex]x=6\text{ or }x=-9[/tex]

Hence the equation given can have two solutions.

Final Answer: The given equation can have two solutions as x=6 or x=-9.