Respuesta :

Find the equation of the inverse.

[tex]y = {2}^{x + 5} - 6[/tex]

we have

[tex]y=\mleft\{2\mright\}^{\mleft\{x+5\mright\}}-6[/tex]

step 1

Exchange the variables

x for y and y for x

[tex]x=\{2\}^{\{y+5\}}-6[/tex]

step 2

Isolate the variable y

[tex](x+6)=2^{(y+5)}[/tex]

apply log both sides

[tex]\begin{gathered} \log (x+6)=(y+5)\cdot\log (2) \\ y+5=\frac{\log (x+6)}{\log (2)} \\ \\ y=\frac{\log(x+6)}{\log(2)}-5 \end{gathered}[/tex]

step 3

Let

[tex]f^{(-1)}(x)=y[/tex]

therefore

the inverse function is

[tex]f^{(-1)}(x)=\frac{\log(x+6)}{\log(2)}-5[/tex]