Respuesta :

Step 1

Redraw the diagram and use the Pythagoras theorem to find the value of c\x.

Step 2:

Find the value of y from the right-angle triangle of sides: 10, 25 and y using the Pythagoras theorem

Opposite = y

Adjacent = 10

Hypotenuse = 25

[tex]\begin{gathered} \text{Pythagoras theorem} \\ \text{Opposite}^2+adjacent^2=hypotenuse^2 \\ y^2+10^2=25^2 \\ y^2\text{ + 100 = 625} \\ y^2\text{ = 625 - 100} \\ y^2\text{ = 525} \\ y\text{ = }\sqrt[]{525} \\ y\text{ = 5}\sqrt[]{21} \end{gathered}[/tex]

Step 3

Next, use the Pythagoras theorem to find x from the triangle with sides

28, x and y

Hypotenuse = 28

Opposite = x

Adjacent = y

[tex]\begin{gathered} x^2+y^2=28^2 \\ x^2\text{ + (5}\sqrt[]{21})^2=28^2 \\ x^2\text{ + 525 = 784} \\ x^2\text{ = 784 - 525} \\ x^2\text{ = 259} \\ \text{ x = }\sqrt[]{259} \\ x\text{ = 16.1} \end{gathered}[/tex]

Final answer

x = 16.1

Ver imagen ArriaC72562