Given:
The function is,
[tex]\lim _{x\to1}\frac{(x^2-1)}{(x-1)}[/tex]Take the limit as x tends to 1,
[tex]\begin{gathered} \lim _{x\to1}\frac{(x^2-1)}{(x-1)} \\ \text{Applying the limit as x=1 it will give }\frac{0}{0}\text{ form } \\ So,\text{ simplify the function.} \\ \lim _{x\to1}\frac{(x^2-1)}{(x-1)}=\lim _{x\to1}\frac{(x^{}-1)(x+1)}{(x-1)}=\lim _{x\to1}(x+1)=1+1=2 \end{gathered}[/tex]The limit of the function is 2.
The graph of the function is,