Consider the following functions:f(x) = cos(x3 - x)h(x) = |x-313g(x) = ln(x + 3)5(x) = sin(x)Which of the following is true?A. fand gare even, sis odd.B. hand s are odd, g is even.C. fis even, hand s are odd.D. sis odd, fand hare even.E. gand fare even, his odd.SUBMIT

Consider the following functionsfx cosx3 xhx x313gx lnx 35x sinxWhich of the following is trueA fand gare even sis oddB hand s are odd g is evenC fis even hand class=

Respuesta :

The alternatives indicates that the question is aboud even and odd function.

An even function is one the gives:

[tex]f(x)=f(-x)[/tex]

While an odd function is one tha gives:

[tex]f(x)=-f(-x)[/tex]

The fisrt function is:

[tex]\begin{gathered} f(x)=\cos ^3(x^3-x) \\ f(-x)=\cos ^3((-x)^3-(-x))=\cos ^3(-x^3+x)=\cos ^{}^{3}(-(x^3-x)) \end{gathered}[/tex]

Since

[tex]\cos (x)=\cos (-x)[/tex]

Then

[tex]\begin{gathered} \cos ^3(-(x^3-x))=\cos ^3(x^3-x) \\ f(x)=f(-x) \end{gathered}[/tex]

So, f is even.

We can do it similarly for g(x)

[tex]\begin{gathered} g(x)=\ln (|x|+3) \\ g(-x)=\ln (|-x|+3)=\ln (|x|+3) \\ g(x)=g(-x) \end{gathered}[/tex]

For s(x), we have:

[tex]\begin{gathered} s(x)=\sin ^{3}(x) \\ s(-x)=\sin ^{3}(-x) \end{gathered}[/tex]

Since:

[tex]\sin (-x)=-\sin (x)[/tex]

Then:

[tex]\begin{gathered} \sin ^3(-x)=(-\sin (x))^3=-\sin ^{3}(x) \\ s(x)=-s(-x) \end{gathered}[/tex]

So far we have f(x) even, g(x) even and s(x) odd. This is exactly what is said in alternative A:

A. f and g are even, s is odd.

so that is the right answer.