Respuesta :

Answer:

The value of cos(theta) is;

[tex]\cos \theta=\frac{\sqrt[]{5}}{5}[/tex]

Explanation:

Given that;

[tex]\tan \theta=\frac{2\sqrt[]{11}}{\sqrt[]{11}}[/tex]

Recall that from trigonometry;

[tex]\tan \theta=\frac{opposite}{adjacent}[/tex]

So;

[tex]\begin{gathered} \tan \theta=\frac{opposite}{adjacent}=\frac{2\sqrt[]{11}}{\sqrt[]{11}} \\ \text{opposite}=2\sqrt[]{11} \\ \text{adjacent}=\sqrt[]{11} \end{gathered}[/tex]

To get the hypotenuse;

[tex]\begin{gathered} c^2=a^2+b^2 \\ c^2=(2\sqrt[]{11})^2+(\sqrt[]{11})^2 \\ c^2=44+11 \\ c^2=55 \\ c=\sqrt[]{55} \end{gathered}[/tex]

Also;

[tex]\begin{gathered} \cos \theta=\frac{adjacent}{hypotenuse}=\frac{\sqrt[]{11}}{\sqrt[]{55}}=\frac{1}{\sqrt[]{5}} \\ \cos \theta=\frac{1}{\sqrt[]{5}}\times\frac{\sqrt[]{5}}{\sqrt[]{5}} \\ \cos \theta=\frac{\sqrt[]{5}}{5} \end{gathered}[/tex]

Therefore, the value of cos(theta) is;

[tex]\cos \theta=\frac{\sqrt[]{5}}{5}[/tex]