Given f(x)=50x a Graph b(x)=f(x)-150. Then complete the table of corresponding points on b(x)b.Write the equation for the function b(x) in general formc. Describe the transformation performed on f(x) to produce b(x)

We have the following:
We replace one function within the other and we are left
[tex]\begin{gathered} f(x)=50x \\ b(x)=f(x)-150 \\ b(x)=50x-150 \end{gathered}[/tex]now we replace the values in this new function,
[tex]\begin{gathered} b(2)=50\cdot2-150=100-150=-50 \\ b(4)=50\cdot4-150=200-150=50 \\ b(6)=50\cdot6-150=300-150=150 \\ b(8)=50\cdot8-150=400-150=250 \end{gathered}[/tex]The table complete is:
a.
b.
general form
[tex]\begin{gathered} y=50x-150 \\ y-50x+150=0 \end{gathered}[/tex]c.
Which means that a translation of 150 units down