Given f(x)=50x a Graph b(x)=f(x)-150. Then complete the table of corresponding points on b(x)b.Write the equation for the function b(x) in general formc. Describe the transformation performed on f(x) to produce b(x)

Given fx50x a Graph bxfx150 Then complete the table of corresponding points on bxbWrite the equation for the function bx in general formc Describe the transform class=

Respuesta :

We have the following:

We replace one function within the other and we are left

[tex]\begin{gathered} f(x)=50x \\ b(x)=f(x)-150 \\ b(x)=50x-150 \end{gathered}[/tex]

now we replace the values in this new function,

[tex]\begin{gathered} b(2)=50\cdot2-150=100-150=-50 \\ b(4)=50\cdot4-150=200-150=50 \\ b(6)=50\cdot6-150=300-150=150 \\ b(8)=50\cdot8-150=400-150=250 \end{gathered}[/tex]

The table complete is:

a.

b.

general form

[tex]\begin{gathered} y=50x-150 \\ y-50x+150=0 \end{gathered}[/tex]

c.

Which means that a translation of 150 units down

Ver imagen ShihabG492438
Ver imagen ShihabG492438