Respuesta :

Solution

- The solution steps are:

[tex]\begin{gathered} \begin{bmatrix}{x} & & \\ {y} & & \\ {z} & & {}\end{bmatrix}\begin{bmatrix}{1} & {0} & {0}|6 \\ {0} & {1} & {0}|7 \\ {0} & {0} & {1}|2\end{bmatrix} \\ \\ \begin{bmatrix}{x} & & \\ {y} & & \\ {z} & & {}\end{bmatrix}\begin{bmatrix}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {0} & {0} & {1}\end{bmatrix}=\begin{bmatrix}{x} & {0} & {0} \\ {0} & {y} & {0} \\ {0} & {0} & {z}\end{bmatrix}=\begin{bmatrix}6 & & \\ 7 & & \\ 2 & & {}\end{bmatrix} \\ \\ \text{ This means that:} \\ x+0y+0z=6 \\ 0x+y+0z=7 \\ 0x+0y+z=2 \\ \\ \\ \therefore x=6,y=7,z=2 \end{gathered}[/tex]