Hi, I'm confused on how to get 15.6 from this question.

In order to calculate the angle of refraction, we can use the law of refraction below:
[tex]n_1sin\theta_1=n_2sin\theta_2[/tex]Where n1 and n2 are the index of refraction and theta1 and theta2 are the incident angle and the refraction angle.
So, using n1 = 1.0003, n2 = 2.42 and theta1 = 40.5°, we have:
[tex]\begin{gathered} 1.0003*sin\left(40.5°\right)=2.42*sin\theta_2 \\ 1.0003*0.649448=2.42*sin\theta_2 \\ 0.6496428=2.42*sin\theta_2 \\ sin\theta_2=\frac{0.6496428}{2.42} \\ sin\theta_2=0.268447438 \\ \theta_2=15.6° \end{gathered}[/tex]Therefore the angle of refraction is 15.6°.