In a diagram,
There are multiple possible diagrams, this is just one of them.
To find the angle θ using the cosine law, proceed as shown below
[tex]\begin{gathered} c^2=a^2+b^2-2ab\cos \theta \\ c\to\text{opposite side to }\theta \end{gathered}[/tex]Solving the equation for θ
[tex]\begin{gathered} \Rightarrow c^2-a^2-b^2=-2ab\cos \theta \\ \Rightarrow\frac{a^2+b^2-c^2}{2ab}=\cos \theta \\ \Rightarrow\theta=\cos ^{-1}(\frac{a^2+b^2-c^2}{2ab}) \end{gathered}[/tex]In our case,
[tex]c=55,a=60,b=10[/tex]Thus,
[tex]\begin{gathered} \Rightarrow\theta=\cos ^{-1}(\frac{675}{1200})=\cos ^{-1}(\frac{9}{16})=55.77dgr \\ \Rightarrow\theta=55.77\text{dgr} \end{gathered}[/tex]The answer is 55.77°