Which statements could be used to prove that ΔABC and ΔA′B′C′ are congruent?

Given:
[tex]\Delta ABC\cong\Delta A^{\prime}B^{\prime}C^{\prime}[/tex]To find:
The correct statements that could be used to prove the given.
Explanation:
Using the AAS congruence rule,
[tex]\begin{gathered} \angle A\cong\angle A^{\prime} \\ \angle C\cong\angle C^{\prime} \\ AB\cong A^{\prime}B^{\prime} \end{gathered}[/tex]We shall prove that,
[tex]\Delta ABC\cong\Delta A^{\prime}B^{\prime}C^{\prime}[/tex]Therefore, the correct option is B.
Final answer:
The correct option is B.
[tex]\begin{gathered} AB\cong A^{\prime}B^{\prime} \\ \angle A\cong\angle A^{\prime} \\ \angle C\cong\angle C^{\prime} \end{gathered}[/tex]