Respuesta :

The function is given as

[tex]f(x)=9x^2-12,x\ge0[/tex]

To find the inverse of f(x)

Let f(x) = y

This implies

[tex]y=9x^2-12[/tex]

Make x the subject of the equation

First, add 12 to both sides of the equation

[tex]y+12=9x^2-12+12[/tex]

This gives

[tex]y+12=9x^2[/tex]

Divide both sides of the equation by 9

[tex]\frac{y+12}{9}=x^2[/tex]

Next, take the square root of both sides of the equation

[tex]\begin{gathered} \sqrt[]{\frac{y+12}{9}}=\sqrt[]{x^2} \\ \Rightarrow x=\sqrt[]{\frac{y+12}{9}} \end{gathered}[/tex]

Let the inverse be g(x)

Hence, for the inverse substitute x for y

This gives

[tex]g(x)=\sqrt[]{\frac{x+12}{9}}[/tex]