Respuesta :

Given:

[tex]Area=16x^2-40xy+25y^2[/tex]

To determine the side of the square, we first note that formula of the area of a square is:

[tex]Area=(Side)^2[/tex]

Hence,

[tex]Side=\sqrt{Area}[/tex]

Now, we solve for the side of the square:

[tex]\begin{gathered} S\imaginaryI de=\sqrt{Area} \\ S\imaginaryI de=\sqrt{16x^2-40xy+25y^2} \\ Simplify\text{ and rearrange} \\ S\mathrm{i}de=\sqrt{(4x-5y)^2} \\ \end{gathered}[/tex]

Then, we apply the radical rule:

[tex]\sqrt[n]{a^n}=a,\text{ assuming a}\ge0[/tex]

So,

[tex]\begin{gathered} S\imaginaryI de=\sqrt{(4x-5y)^2} \\ S\mathrm{i}de=4x-5y \end{gathered}[/tex]

Therefore, the side of the square is:

[tex]4x-5y[/tex]