Given:
[tex]\left(16,-8\right),(2,-15)[/tex]To find:
The distance between the points.
Explanation:
Using the distance formula,
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Substituting the values, we get,
[tex]\begin{gathered} d=\sqrt{(2-16)^2+(-15-(-8))^2} \\ =\sqrt{(2-16)^2+(-15+8)^2} \\ =\sqrt{(-14)^2+(-7)^2} \\ =\sqrt{196+49} \\ d=\sqrt{245}units \end{gathered}[/tex]Therefore, the distance between two points is,
[tex]\begin{gathered} d=\sqrt{245}units \\ (or) \\ d=15.65\text{ units.} \end{gathered}[/tex]Final answer:
The distance between two points is,
[tex]\begin{gathered} d=\sqrt{245}units \\ (or) \\ d=15.65\text{ units.} \end{gathered}[/tex]