Respuesta :

Given:

[tex]\left(16,-8\right),(2,-15)[/tex]

To find:

The distance between the points.

Explanation:

Using the distance formula,

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substituting the values, we get,

[tex]\begin{gathered} d=\sqrt{(2-16)^2+(-15-(-8))^2} \\ =\sqrt{(2-16)^2+(-15+8)^2} \\ =\sqrt{(-14)^2+(-7)^2} \\ =\sqrt{196+49} \\ d=\sqrt{245}units \end{gathered}[/tex]

Therefore, the distance between two points is,

[tex]\begin{gathered} d=\sqrt{245}units \\ (or) \\ d=15.65\text{ units.} \end{gathered}[/tex]

Final answer:

The distance between two points is,

[tex]\begin{gathered} d=\sqrt{245}units \\ (or) \\ d=15.65\text{ units.} \end{gathered}[/tex]