ANSWER
The percentage yield of water is 160%
EXPLANATION
Given that;
The mass of water is 144.9 grams
The mass of hydrogen gas is 10.04 grams
Follow the steps below to find the percentage yield of water
Write the balanced equation of the reaction
[tex]\text{ 2H}_{2(g)}+\text{ O}_{2(g)}\text{ }\rightarrow\text{ 2H}_2O_{(g)}[/tex]Step1; Find the number of moles of hydrogen gas using the formula below
[tex]\text{ mole = }\frac{\text{ mass}}{\text{ molar mass}}[/tex]Recall, that the molar mass of H2 is 2 g/mol
[tex]\begin{gathered} \text{ mole = }\frac{\text{ 10.04}}{\text{ 2}} \\ \text{ mole = 5.02 moles} \end{gathered}[/tex]Step 2; Find the number of moles of water using a stoichiometry ratio
In the reaction, 2 moles H2 give 2 moles H2O
Therefore, the number of moles of H20 is 5.02 moles
Step 3: Find the mass of H2O
[tex]\begin{gathered} \text{ Mole = }\frac{\text{ mass}}{\text{ molar mass}} \\ \text{ cross multiply} \\ \text{ mass = mole }\times\text{ molar mass} \end{gathered}[/tex]The molar mass of water is 18.0 g/mol
[tex]\begin{gathered} \text{ mass = 18 }\times\text{ 5.02} \\ \text{ mass = 90.36 grams} \end{gathered}[/tex]Step 4; Find the percentage yield of water
[tex]\begin{gathered} \text{ \% yield = }\frac{\text{ Actual yield}}{\text{ Theoretical yield}}\times\text{ 100\%} \\ \\ \text{ \% yield = }\frac{\text{ 144.9}}{90.36}\times\text{ 100\%} \\ \\ \text{ \% yield = 1.60}\times100\text{ \%} \\ \text{ \%yield = 160\%} \end{gathered}[/tex]Therefore, the percentage yield of water is 160%