Respuesta :

Explanation

The vertical asymptote

[tex]\begin{gathered} \mathrm{For\:rational\:functions,\:the\:vertical\:asymptotes\:are\:the\:undefined\:points,\:} \\ \mathrm{also\:known\:as\:the\:zeros\:of\:the\:denominator,\:of\:the\:simplified\:function.} \end{gathered}[/tex]

for the given function

[tex]T(x)=\frac{x^3}{x^4-81}[/tex]

According to the formula

The denominator will be undefined when

[tex]\begin{gathered} x^4-81=0 \\ x=\sqrt[4]{81} \\ x=3,\text{ x=-3} \\ x= \end{gathered}[/tex]

The vertical asymptotes are

[tex]x=-3,3[/tex]

For the horizontal function

[tex]\mathrm{If\:denominator's\:degree\:>\:numerator's\:degree,\:the\:horizontal\:asymptote\:is\:the\:x-axis:}\:y=0.[/tex]

Since the denominator degree is higher than the numerator

Then

The horizontal asymptote is

[tex]y=0[/tex]

For the oblique asymptote

Since the degree of the numerator is not one degree greater than the denominator, then there are no slant asymptotes.

There are no oblique asymptote