Consider the complex number 2 = V17 (cos(104") + i sin(104°)).Plot z in the complex plane below.If necessary, round the point's coordinates to the nearest integer.Im5-4-3 -21+Re-5-4-3-2 -112.345-1-2-1-3-4-5

Consider the complex number 2 V17 cos104 i sin104Plot z in the complex plane belowIf necessary round the points coordinates to the nearest integerIm543 21Re5432 class=

Respuesta :

Given:

[tex]z=\sqrt[]{17}(\cos (104^{\circ})+i\sin (104^{\circ}))[/tex]

To plot this point on the z-[ane,

[tex]\begin{gathered} z=r(\cos \theta+i\sin \theta) \\ a=r\cos \theta,b=r\sin \theta \end{gathered}[/tex]

For the given complex number,

[tex]r=\sqrt[]{17},\theta=104^{\circ}[/tex]

It is graphed as,

The rectangular form is,

[tex]\begin{gathered} z=\sqrt[]{17}(\cos (104^{\circ})+i\sin (104^{\circ})) \\ z=\sqrt[]{17}((-0.2419)+i(0.9703)) \\ z=-0.9974+i4.0006 \\ (a,b)=(-0.9974,4.0006) \end{gathered}[/tex]

The point on the z-plane is,

Ver imagen QueenB2367
Ver imagen QueenB2367