Given the function f(x) = -x^2 - 9x + 25, determine the average rate of change of the function over the interval −6 ≤ x ≤ 2.

Respuesta :

ANSWER

[tex]undefined[/tex]

EXPLANATION

To find the average rate of change of the function, we have to apply the formula:

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

for a ≤ x ≤ b

This implies that:

[tex]\begin{gathered} a=-6 \\ b=2 \end{gathered}[/tex]

Therefore, the average rate of change of the function is:

[tex]\frac{f(2)-f(-6)}{2-(-6)}[/tex]

To find f(2), we have to substitute 2 for x in the given function:

[tex]\begin{gathered} f(2)=-(2)^2-9(2)+25 \\ f(2)=-4-18+25 \\ f(2)=3 \end{gathered}[/tex]

To find f(-6), substitute -6 for x in the given function:

[tex]\begin{gathered} f(-6)=-(-6)^2-9(-6)+25 \\ f(-6)=-36+54+25 \\ f(-6)=43 \end{gathered}[/tex]

Therefore, the average rate of change of the function is:

[tex]\begin{gathered} \frac{3-43}{2+6} \\ \Rightarrow\frac{-40}{8} \\ \Rightarrow-5 \end{gathered}[/tex]

That is the answer.