Raya sent an encoded message back to Darnell that provides the location of the next clue.C=[77,9, 75, -35, 41, -13, 80,-40, 44, -2, 28, -14, 127, -1]To decode the message, Darnell will need to use the inverse of the 2 x 2 encoding matrix, A. Complete the following problems to determine the next clue. 1.)What is the determinant of A? Show your work or explain. (3 points)A=[3 4 1 -2 2.)What is the inverse matrix of A? Show how to get A–1. (4 points)3.)What is A–1 × C? (4 points)4.)Describe how to use the resultant matrix from part c to decode the message. What does the decoded message say?

Respuesta :

1. The matrix A is:

[tex]A=\begin{bmatrix}{3} & {4} & {} \\ {1} & {-2} & {} \\ {} & {} & {}\end{bmatrix}[/tex]

The determinant of a 2x2 matrix can be found as follows:

[tex]\begin{gathered} \det \begin{bmatrix}{a} & {b} & {} \\ {c} & {d} & {} \\ {} & {} & {}\end{bmatrix}=a\times d-b\times c \\ \text{Thus }\det |A|=3\times(-2)-4\times1 \\ \det |A|=-6-4 \\ \det |A|=-10 \end{gathered}[/tex]

The determinant of matrix A is -10

2. The inverse of a matrix is given by:

[tex]\begin{gathered} A^{-1}=\frac{1}{\det |A|}\begin{bmatrix}{d} & {-b} & {} \\ {-c} & {a} & {} \\ {} & {} & {}\end{bmatrix} \\ A^{-1}=\frac{1}{-10}\begin{bmatrix}{-2} & {-4} & {} \\ {-1} & {3} & {} \\ {} & {} & {}\end{bmatrix} \\ A^{-1}=\begin{bmatrix}{\frac{-2}{-10}} & {\frac{-4}{-10}} & {} \\ {\frac{-1}{-10}} & {\frac{3}{-10}} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{\frac{1}{5}} & {\frac{2}{5}} & {} \\ {\frac{1}{10}} & {-\frac{3}{10}} & {} \\ {} & {} & {}\end{bmatrix} \end{gathered}[/tex]