Respuesta :

Given:

n = 1 , 2 , 3, 4, 5

f(n) = 1, 3, 5 , 7, 9

Let's find the common differnce,

9 - 7 = 7 -5 = 5 - 3 = 3 - 1 = 2

The common diffrence is 2.

The explicit rule is:

f(n) = 1 + 2(n - 1)

The recursive rule is:

[tex]a_n=a_{n-1}+2_{}[/tex]

ANSWER:

f(1) = 1

d = 2

E : f(n) = 1 + 2(n - 1)

[tex]\begin{gathered} R\colon_{} \\ \mleft\{\begin{aligned}a(1)=1 \\ a_n=a_{n-1}+2\end{aligned}\mright. \end{gathered}[/tex]