Respuesta :

Given the function

[tex]f(x)=2x^2+2x-24[/tex]

To find the x and y intersects of the parabola you have to do as follows:

y-intercept

This is the value of f(x) when x=0, to find it replace the value in the formula:

[tex]\begin{gathered} f(0)=2(0)^2+2\cdot0-24 \\ f(0)=-24 \end{gathered}[/tex]

The y-intercept of the parabola is (0,-24)

Vertex

Calculate the x coordinate using the following formula:

For

[tex]y=ax^2+bx+c[/tex][tex]x_v=-\frac{b}{2a}[/tex]

For this function:

[tex]x_v=-\frac{2}{2\cdot2}=-\frac{2}{4}=-\frac{1}{2}[/tex]

Using this value of x imput it in the formula to reach the value of the y-coordinate of the vertex:

[tex]\begin{gathered} f(x_v=-\frac{1}{2})=2(-\frac{1}{2})^2+2(-\frac{1}{2})-24 \\ f(x_v)=-\frac{49}{2} \end{gathered}[/tex]

The vertex is (-1/2,-49/2)

Using these two points you can draw the function:

Using the graph you can determine the x-intercepts of the function, these are (-4,0) and (3,0)

Ver imagen MalkI607386