Respuesta :

Explanation

The general form of a quadratic equation is:

[tex]y=ax^2+bx+c.[/tex]

We must take to the general form the following equation:

[tex]3y+6x=9x^2-12.[/tex]

1) First, we pass the +6x at the left as -6x at the right:

[tex]3y=9x^2-6x-12.[/tex]

2) Now, we divide both sides by 3 and distribute the division:

[tex]y=\frac{9x^2-6x-12}{3}=\frac{9x^2}{3}-\frac{6x}{3}-\frac{12}{3}=3x^2-2x-4.[/tex]Answer[tex]y=3x^2-2x-4[/tex]