Given:
[tex]g\mleft(x\mright)=x^{2}+4x-1[/tex]Evaluate the function at given numbers.
a) at x = -4,
[tex]\begin{gathered} g\mleft(x\mright)=x^2+4x-1 \\ g\mleft(-4\mright)=(-4)^2+4(-4)-1 \\ g(-4)=16-16-1 \\ g(-4)=-1 \end{gathered}[/tex]Answer: g(-4)= -1
b) at x = 7,
[tex]\begin{gathered} g(x)=x^2+4x-1 \\ g(7)=7^2+4(7)-1 \\ g(7)=49+28-1 \\ g(7)=76 \end{gathered}[/tex]Answer: g(7) = 76
c) at x = -1/2
[tex]\begin{gathered} g(x)=x^2+4x-1 \\ g(-\frac{1}{2})=(-\frac{1}{2})^2+4(-\frac{1}{2})-1 \\ g(-\frac{1}{2})=\frac{1}{4}-2-1 \\ g(-\frac{1}{2})=\frac{1}{4}-3 \\ g(-\frac{1}{2})=\frac{1-12}{4} \\ g(-\frac{1}{2})=-\frac{11}{4} \end{gathered}[/tex]Answer: g(-1/2) = -11/4