15643.77
Explanation
to solve this we need to use the formula
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ where: \\ P\text{ is the prinicipal \lparen initial amount\rparen} \\ r\text{ is the interest rate \lparen in decimals\rparen} \\ n=number\text{ of times interest is compoun in a unit of time t} \\ \text{t is the time} \end{gathered}[/tex]
so
Step 1
a)let
[tex]\begin{gathered} P=\text{ 10000} \\ n=4 \\ r=4.5\text{ \%= }\frac{4.5}{100}=0.045 \\ t=10\text{ years} \end{gathered}[/tex]
b) now, replace in the formula
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ A=10000(1+\frac{0.045}{4})^{4*10} \\ A=10000(1+0.01125)^{40} \\ A=10000(1.01125)^{40} \\ A=10000(1.564) \\ A=15643.77 \end{gathered}[/tex]
therefore, the answer i
15643.77
I hope this helps you