Respuesta :

Given two points (x₁, y₁) and (x₂, y₂), the slope of the line that passes through these two points can be calculated using the formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}\ldots(1)[/tex]

Using an arbitrary point of the line (x₀, y₀), the slope-point form of the line equation is:

[tex]y-y_0=m(x-x_0)\ldots(2)[/tex]

Now, from the problem:

(a)

[tex]\begin{gathered} (x_1,y_1)=(1,9) \\ (x_2,y_2)=(3,9) \end{gathered}[/tex]

Using (1) to find the slope of the line:

[tex]\begin{gathered} m=\frac{9-9}{3-1} \\ \Rightarrow m=0 \end{gathered}[/tex]

Now, using (1, 9) and (2):

[tex]\begin{gathered} y-9=0(x-1) \\ \Rightarrow y=9 \end{gathered}[/tex]

The equation of the line is y = 9

(c)

[tex]\begin{gathered} (x_1,y_1)=(4.2,7.6) \\ (x_2,y_2)=(-1.6,9.1) \end{gathered}[/tex]

Using (1) to find the slope of the line:

[tex]m=\frac{9.1-7.6}{-1.6-4.2}=\frac{1.5}{-5.8}=-\frac{15}{58}[/tex]

Now, using (4.2, 7.6) and (2):

[tex]y-7.6=-\frac{15}{58}(x-4.2)[/tex]

Rounding to two decimal places:

[tex]y=-0.26x+8.69[/tex]