Respuesta :

First, recall that given the equation

[tex]ax^2+b+c=0[/tex]

The solutions are given by

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

where the sign in the middle means that we get one root by taking a plus sign and we get the other root by taking a minus sign.

In our case, we have a=1, b=-6 and c=-41. So the solutions of this equation are given by

[tex]x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4(-41)}}{2}=\frac{6\pm\sqrt[]{36+164}}{2}=\frac{6\pm\sqrt[]{200}}{2}[/tex]

Note that

[tex]\sqrt[]{200}=\sqrt[]{100\cdot2}=\sqrt[]{100}\cdot\sqrt[]{2}=10\sqrt[]{2}[/tex]

Then

[tex]x=\frac{6\pm10\sqrt[]{2}}{2}=3\pm5\sqrt[]{2}[/tex]

taking sqrt(2) as 1.4142, we get

[tex]x=3+5\cdot\sqrt[]{2}=10.071\approx10[/tex]

and

[tex]x=3-5\sqrt[]{2}=-4.071\approx-4[/tex]