Respuesta :

You have the following expression:

[tex]\sqrt[]{40x^4y^3z}[/tex]

In order to simplify it you need to remember this property for Radicals:

[tex]\sqrt[n]{a^n}=a^{\frac{n}{n}}=a[/tex]

Then:

- Descompose the number 40 into its Prime factors:

[tex]40=2\cdot2\cdot2\cdot5[/tex]

- Apply the Product of Powers property that states:

[tex](b^m)(b^n)=b^{(m+n)}[/tex]

Then:

[tex]40=2^2\cdot2\cdot5[/tex]

- Rewrite the expression:

[tex]=\sqrt[]{2^2\cdot2\cdot5\cdot x^4\cdot y^2\cdot y\cdot z}[/tex]

- Simplifying, you get:

[tex]=2x^2y\sqrt[]{2\cdot5yz}=2x^2y\sqrt[]{10yz}[/tex]

The answer is:

[tex]2x^2y\sqrt[]{10yz}[/tex]