Let's try to sketch the problem.
From the diagram,
|AC| = 15.45 m, |AB| = 10.2 m |EB| = 1.25 while |DC|=h
Using the idea of similar triangles,
[tex]\begin{gathered} \frac{EB}{AB}=\frac{DC}{AC} \\ \\ \frac{1.25}{5.25}=\frac{h}{15.45} \\ \\ \Rightarrow h=\frac{15.45\times1.25}{10.2}\approx1.89m(\text{Nearest hundredth)} \end{gathered}[/tex]Therefore, the height of the tree is 1.89m