Respuesta :

By definition of conditional probability you know that

[tex]P(B|A)=\frac{P(A\cap B)}{P(A)}[/tex]

Now, replace the values that you have and solve for P(A and B)​

[tex]\begin{gathered} P(B|A)=\frac{P(A\cap B)}{P(A)} \\ 0.37=\frac{P(A\cap B)}{0.28} \\ \text{ Multiply by 0.28 on both sides of the equation} \\ 0.37\cdot0.28=\frac{P(A\cap B)}{0.28}\cdot0.28 \\ \text{ Therefore,} \\ 0.1036=P(A\cap B) \end{gathered}[/tex]