Respuesta :

The volume of the solid object is 12 cubic units

Note that dilating an object with a scale factor of k will reduced or enlarge the measurement of it's side.

For the volume, we have three dimensions since its in the cubic form..

For example :

length x width x height (Three dimensions)

So to get the new volume :

[tex]V_{\text{new}}=\lbrack(V^{}_{\text{orig}})^{\frac{1}{3}}\times k\rbrack^3[/tex]

The original volume must be raised to 1/3 to get one unit dimension..

[tex](units^3)^{\frac{1}{3}}=unit[/tex]

Substitute the original volume and the values of k to the formula :

For k = 1/4

[tex]V_{new}=(12^{\frac{1}{3}}\times\frac{1}{4})^3_{}=\frac{3}{16}=0.188[/tex]

For k = 0.4

[tex]V_{new}=(12^{\frac{1}{3}}\times0.4)^3_{}=\frac{9}{125}=0.072[/tex]

For k = 1

Volume will still be the same since the scale factor is 1.

For k = 1.2

[tex]V_{new}=(12^{\frac{1}{3}}\times1.2)^3_{}=\frac{2592}{125}=20.736[/tex]

For k = 5/3

[tex]V_{new}=(12^{\frac{1}{3}}\times\frac{5}{3})^3_{}=\frac{500}{9}=55.556[/tex]

For k = 6.1

[tex]V_{new}=(12^{\frac{1}{3}}\times6.1)^3_{}=2723.772[/tex]

Note that all answers are in cubic units.